Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase.
نویسندگان
چکیده
Treatment of isolated canine renal Na,K-ATPase with a stable diazomethane analog, 4-(diazomethyl)-7-(diethylamino)-coumarin (DEAC), results in enzyme inactivation. The inactivation rate was dramatically increased when the enzyme was treated with DEAC in the presence of ATP and Mg2+ (in imidazole buffer) or Pi and Mg2+, conditions which produce enzyme phosphorylation. Inactivation in the presence of Pi and Mg2+ could be partially prevented by Na+ and almost completely prevented by K+. The quantity of DEAC covalently bound to the Na,K-ATPase was determined spectrophotometrically. The extent of inactivation was linearly related to the amount of K-protectable DEAC incorporation. Complete inactivation of ATPase activity occurred with 2.14 +/- 0.18 nmol of DEAC covalently bound/mg of protein. This suggests that only 1 or 2 carboxyl residues/catalytic center (estimated by high affinity ADP binding) are involved in the modification leading to inactivation. The modified enzyme exhibited normal levels of high affinity [3H]ADP (and hence ATP) binding, thus, the nucleotide-binding domain of the enzyme seems unaffected by the modification. In contrast, under conditions where native enzyme was able to occlude 3.82 nmol of K+ ions/mg of protein, DEAC-modified enzyme occluded only 0.33 nmol of K+ ions. Na+ occlusion by the enzyme (in the presence of oligomycin) was also reduced (by 80%) following treatment with DEAC. Phosphorylation by [32P]inorganic phosphate and Na(+)-activated phosphorylation of the modified enzyme with [32P]ATP yielded reduced levels of phosphoenzyme (about 36%) compared to native enzyme. The DEAC-modified [32P]phosphoenzyme formed from [32P]ATP was insensitive to the addition of K+ ions, under conditions which led to the rapid hydrolysis of native phosphoenzyme. Gel electrophoresis of modified protein revealed strong fluorescence labeling of the alpha-subunit, which was substantially reduced if treatment with DEAC was performed in the presence of K+ ions. Partial tryptic digestion and electrophoretic analysis revealed normal degradation patterns in the presence of ADP (E1 form) but the typical patterns, seen with K+ ions (E2K) or Na+ ions (E1Na) in native enzyme, were absent. A typical E2-like tryptic degradation pattern was seen, however, in the presence of vanadate ions and ouabain, suggesting that the modification does not freeze the enzyme in an E1 conformation and that the enzyme is still able to undergo the E1E2 conformational transition after modification. Our results suggest that a small number of carboxyl residues in the sodium pump alpha-subunit (perhaps one) are essential for K+ and Na+ binding and stabilizing the occluded enzyme cation forms. Esterification of the carboxyl groups by DEAC inactivates the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملStructure and mechanism of Na,K-ATPase: functional sites and their interactions.
The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed...
متن کاملModification of lysine 501 in Na,K-ATPase reveals coupling between cation occupancy and changes in the ATP binding domain.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI) results in irreversible loss of enzymatic activity. The reactivity of the protein toward the probe is about 10-fold greater in the E1.Na or sodium-bound form than when it is in the E2.K or potassium-bound form. Fully inactivated enzyme does not bind ATP but binds sodium and potassium and undergoes t...
متن کاملEffect of different levels of salinity on immunolocalization of Na+-K+ ATPase and Aquaporin 3 in kidney of common carp Cyprinus carpio
Cyprinus carpio is a stenohaline species but can tolerate some ranges of changes in environmental salinities, so histomorphological methods and Na+-K+ ATPase and Aquaporin 3 immunohistochemistry were performed on common carp kidney as an osmoregulatory organ in experimental groups and control in order to investigate their possible roles during salinity challenge. Five groups of fish (n=25) with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 22 شماره
صفحات -
تاریخ انتشار 1991